Introducción al cálculo tensorial. by Machado, Luis M. Series: IRAM Edition statement:1a. ed. Physical details: p.: il.; 22 cm. Subject(s). ×. Cálculo tensorial — Problemas y ejercicios. More like this Add tags for “Teoría y problemas de análisis vectorial y una introducción al analisis tensorial”. Be the. Teoría y problemas de análisis vectorial y una introducción al análisis tensorial. [ Murray R Spiegel] vectorial — Problemas, ejercicios, etc. Cálculo de tensores.

Author: JoJokazahn Fenrirn
Country: Burma
Language: English (Spanish)
Genre: Technology
Published (Last): 13 June 2012
Pages: 105
PDF File Size: 13.71 Mb
ePub File Size: 12.43 Mb
ISBN: 680-5-93807-311-8
Downloads: 62308
Price: Free* [*Free Regsitration Required]
Uploader: Araktilar

The advisable length is pages double-spaced, 11pt or 12pt. Conservation of the energy.

Ejercicios The following sheets are home assignments that contribute to the grading. Local and global flows of vector fields.

Geometría Diferencial

Statement introduccoin the Stokes theorem. Properties of the exterior derivative. The cotangent bundle as the phase space. Tensors on a mainfold. Euclidean Tensors, Einstein summation convention. Some results relating curvature and topology.

  HP DL380G4 PDF

Koha online catalog › Details for: Introducción al cálculo tensorial

Local expression of a differential forms as a combination of determinants. Definition of manifold with boundary.

MacTutor History of Mathematics archive. Geometric meaning of Ricci tensor. Proof of that cohomology is homotopy invariant.

The modern view of the curvature tensor.

The idea is to mention analytical mechanics in the first part, electrodynamics in the second part and general relativity in the third part. Mechanical interpretation of the geodesics. Interpretation of Lorentz transformations.

Here you can find a brief approximate dictionary Mechanics-Geometry. Content calcullo the lectures Part 1 Date. The composition is a short essay about any topic related to differential geometry. I recommend to ask me for confirmation after choosing the topic.

Introducción al cálculo tensorial

Underlying ideas in Riemannian geometry. The topics covered in each lecture are listed here.

The contribution of other activities e. Motivation and notation for the concept of metric.

Geometría diferencial (máster) 2014/2015

Motivation and meaning of the Riemann tensor. Cohomology ans differential topology: Proof of the minimizing property of geodesics using the Gauss lemma. Examples of flow and group law. Conservation of the angular momentum for interactions with spherical introduccjon.


Quick definitions of the Riemann tensor, the Ricci tensor and the scalar curvature. Computation of a geodesic for the Schwarzschild metric. Examples of applications to the geometry of surfaces: Plan of the course. El horario de las clases es de